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The title of these lectures is “The Large, the Small, and the 
Human Mind” and the subject of this first lecture is the Large.1 
The first and second lectures are concerned with our physical Uni- 
verse, which I represent very schematically as the “sphere” in my 
first picture. 

However, these will not be “botanical” lectures, telling you in 
detail what is here and what is there in our Universe, but rather I 
want to concentrate upon understanding of the actual laws that 
govern the way the world behaves. One of the reasons that I have 
chosen to divide my descriptions of the physical laws between two 
lectures, namely, the Large and the Small, is that the laws that 
govern the large-scale behaviour of the world and those that 
govern its small-scale behaviour seem to be very different. The 
fact that they seem to be so different, and what we might have to 
do about his seeming discrepancy, is central to the subject of the 
third lecture - which is where the human mind comes in. 

Since I shall be talking about the physical world in terms of 
the physical theories that underlie its behaviour, I shall also have 
to say something about another world, the Platonic world of abso- 
lutes, in its particular role as the world of mathematical truth. 

FIGURE 1. 

1
 This is the first of three lectures with the overall title “The Large, the Small, 

and the Human Mind.” All three lectures will be published by Cambridge Uni- 
versity Press. 
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One can well take the view that the “Platonic world” contains 
other absolutes, such as the Good and the Beautiful, but I shall be 
concerned here only with the Platonic concepts of mathematics. 
Some people find it hard to conceive of this world as existing on 
its own. They may prefer to think of mathematical concepts merely 
as idealisations of our physical world - and, on this view, the 
mathematical world would be thought of as emerging from the 
world of physical objects (figure 2 ) .  

Now, this is not how I think of mathematics, nor, I believe, is 
it how most mathematicians or mathematical physicists think about 
the world. They think about it in a rather different way, as a struc- 
ture precisely governed according to timeless mathematical laws. 
Thus, they prefer to think of the physical world, more appropri- 
ately, as emerging out of the (“timeless”) world of mathematics, 
as illustrated in figure 3. This picture will have importance for 
what I shall say in the third lecture, and it also underlies most of 
what I shall say in the first two. 

FIGURE 2. FIGURE 3. 
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One of the remarkable things about the behaviour of the world 
is how it seems to be grounded in mathematics to a quite extraor- 
dinary degree of accuracy. The more we understand about the 
physical world, and the deeper we probe into the laws of nature, 
the more it seems as though the physical world almost evaporates 
and we are left only with mathematics. The more deeply we 
understand the laws of physics, the more we are driven into this 
world of mathematics and of mathematical concepts. 

Let us look at the scales we have to deal with in the Universe 
and also the role of our place in the Universe. I can summarise all 
these scales in a single diagram (figure 4). On the left-hand side 
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of the diagram, time-scales are shown. At the bottom of the dia- 
gram, on the left-hand side, is the very shortest time scale that is 
physically meaningful. This time-scale is about 10-43 of a second 
and is often referred to as the Planck time-scale or a “chronon.” 
This time-scale is much shorter than anything experienced in par- 
ticle physics. For example, the shortest-lived particles, called reso- 
nances, last for about 10-23 of a second. Further up the diagram, 
on the left, the day and the year are shown, and, at the top of the 
diagram, the present age of the Universe is shown. 

On the right-hand side of the diagram, distances corresponding 
to these time-scales are depicted. The length corresponding to the 
Planck time (or chronon) is the fundamental unit of length, called 
the Planck length. These concepts of the Planck time and the 
Planck length fall out naturally when one tries to combine the 
physical theories that describe the large and the small, that is, com- 
bining Einstein’s General Relativity, which describes the physics 
of the very large, with quantum mechanics, which describes the 
physics of the very small. When these theories are brought to- 
gether, these Planck lengths and times turn out to be fundamental. 
The translation from the left-hand to the right-hand axis of the 
diagram is via the speed of light so that times can be translated 
into distances by asking how far a light signal could travel in that 
time. 

The sizes of the physical objects represented on the diagram 
range from about 10-15 of a metre for the characteristic sizes of 
particles to about 1027

 meters for the radius of the observable Uni- 
verse at the present time, which is roughly the age of the Universe 
multiplied by the speed of light. It is intriguing to note where we 
are in the diagram, namely, the human scale. With regard to 
spatial dimensions, it can be seen that we are more or less in the 
middle of the diagram. We are enormous compared with the 
Planck length; even compared with the size of particles, we are 
very large. Yet, compared with the distance scale of the observable 
Universe, we are very tiny. Indeed, we are as small compared with 
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it as we are large compared with particles. In contrast, with regard 
to temporal dimensions, the human lifetime is almost as long as 
the Universe! People talk about the ephemeral nature of existence 
but, when you look at the human lifetime as shown in the diagram, 
it can be seen that we are not ephemeral at all -we  live more or 
less as long as the Universe itself! Of course, this is looking on a 
“logarithmic scale,” but this is the natural thing to do when we are 
concerned with such enormous ranges. To  put it another way, the 
number of human lifetimes that make up the age of the Universe 
is very, very much less than the number of Planck times, or even 
lifetimes of the shortest-lived particles, that make up a human 
lifetime. Thus, we are really very stable structures in the Universe. 
As far as spatial sizes are concerned, we are very much in the 
middle - we directly experience neither the physics of the very 
large nor the physics of the very small. W e  are very much in- 
between. In fact, looked at logarithmically, all living objects from 
single cells to human beings are roughly the same in-between size. 

What kinds of physics apply on these different scales? Let me 
introduce the diagram that summarizes the whole of physics. I 
have had to leave out a few details, of course, such as all the equa- 
tions! But the essential basic theories that physicists use are 
indicated. 

The key point is that, in physics, we use two very different 
types of procedure. To  describe the small-scale behaviour, we use 
quantum mechanics - what I have described as the quantum level 
in figure 5. I shall say much more about this in the second lecture. 
One of the things that people say about quantum mechanics is that 
it is fuzzy and indeterministic, but this is not true. So long as you 
remain at this level, quantum theory is deterministic and precise. 
In its most familiar form, quantum mechanics involves use of the 
equation known as Schrödinger’s equation, which governs the be- 
haviour of the physical state of a quantum system-called its 
quantum state - and this is a deterministic equation. I have used 
the letter U to describe this quantum level activity. Indeterminacy 
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FIGURE 5 .  

in quantum mechanics arises only when you perform what is called 
“making a measurement” and that involves magnifying an event 
from the quantum level to the classical level. I shall say quite a lot 
about this in the second lecture. 

On the large scale, we use classical physics, which is entirely 
deterministic - these classical laws include Newton’s laws of mo- 
tion, Maxwell’s laws for the electromagnetic field, which incor- 
porate electricity, magnetism, and light, and Einstein’s theories of 
relativity, the Special Theory, which deals with large velocities, 
and the General Theory, which deals with large gravitational 
fields. These laws apply very, very accurately on the large scale. 

Just as a footnote to figure 5, it can be seen that I have in- 
cluded a remark about “computability” in quantum and classical 
physics. This has no relevance to the present lecture or the next, 
but it will have importance for the third, and I shall return to the 
issue of computability in that lecture. 

For the rest of the present lecture, I shall be primarily con- 
cerned with Einstein’s theory of relativity-specifically, how theory 
works, its extraordinary accuracy, and something about its elegance 
as a physical theory. But let us first consider Newtonian theory. 
Newtonian physics, just as in the case of relativity, allows a space- 
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time description to be used. This was first precisely formulated by 
E.-J. Cartan for Newtonian gravity, some time after Einstein had 
presented his General Theory of relativity. The physics of Galileo 
and Newton is represented in space-time for which there is a 
global time coordinate, here depicted as running up the diagram 
(figure 6);  and for each constant value of the time, there is a 
space section which is a Euclidean 3-space, here depicted as hori- 
zontal planes. An essential feature of the Newtonian space-time 
picture is that these space-slices, across the diagram, represent mo- 
ments of simultaneity. 

Thus, everything that occurs on Monday at noon lies on one 
horizontal slice through the space-time diagram; everything that 
happens on Tuesday at noon lies on the next slice shown in the 
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FIGURE 6. Galilean space-time: particles in uniform motion are depicted 
as straight lines. 
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diagram; and so on. Time cuts across the space-time diagram and 
the Euclidean sections follow one after the other as time pro- 
gresses. All the observers can agree about the time when events take 
place, no matter how they move through the space-time, because 
everyone uses the same time slices to measure how time passes. 

In Einstein’s Special Theory of relativity, one has to adopt a 
different picture. In it, the space-time picture is absolutely essen- 
tial - the key difference is that time is not the universal thing it is 
in Newtonian theory. To appreciate how the theories differ, it is 
necessary to understand an essential part of relativity theory, 
namely, those structures known as light-cones. 

What is a light-cone? A light-cone is drawn in figure 7. W e  
imagine a flash of light taking place at some point at some in- 
stant- that is, at an event in space-time-and the light waves 
travel outwards from this event, the source of the flash, at the 
speed of light. In a purely spatial picture (right-hand picture of 
figure 7 ) ,  we can represent the paths of the light waves through 
space as a sphere expanding at the speed of light. W e  can now 
translate this motion of the light waves into a space-time diagram 
(left-hand picture of figure 7) in which time runs up the diagram 
and the space coordinates refer to horizontal displacements, just as 

‘U 
(a) Space-time                          (b)           Space
FIGURE 7. The representation of the history of a light flash in terms of its 
propagation in (a) space-time and (b) space. 
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in the Newtonian situation of figure 6. Unfortunately, in the full 
space-time picture, on the left of figure 7, we can represent only 
two spatial dimensions horizontally on the diagram, because the 
space of our picture is only three-dimensional, Now, we see that 
the flash is represented by a point (event) at the origin and that 
the subsequent paths of the light rays (waves) cut the horizontal 
“space” planes in circles, the radii of which increase at the speed 
of light up the diagram. It can be seen that the paths of the light 
rays form cones in the space-time diagram. The light-cone thus 
represents the history of this flash of light - light propagates 
away from the origin along the light-cone, which means at the 
speed of light, into the future. Light rays can also arrive at the 
origin along the light-cone from the past - that part of the light- 
cone is known as the past light-cone and all information carried to 
the observer by light waves arrives at the origin along this cone. 

Light-cones represent the most important structures in space- 
time. In particular, they represent the limits of causal influence. 
The history of a particle in space-time is represented by a line 
travelling up the space-time diagram, and this line has to lie within 
the light-cone (figure 8 ) .  This is just another way of saying that a 

/ 

FIGURE 8. A picture of Minkowski geometry. 
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material particle cannot travel faster than the speed of light. No 
signal can travel from inside to outside the future light-cone, so 
that the light-cone does indeed represent the limits of causality. 

There are some remarkable geometrical properties that relate 
to the light-cones. Let us consider two observers moving at dif- 
ferent speeds through space-time. Unlike the case of Newtonian 
theory, in which the planes of simultaneity are the same for all 
observers, there is no absolute simultaneity in relativity. Observers 
moving at different speeds draw their own planes of simultaneity 
as different sections through space-time, as illustrated in figure 9. 
There is a very well-defined way of transforming from one plane 
to another through what is known as a Lorentz transformation, 

Observer 2 4 

FIGURE 9. Illustrating the relativity of simultaneity according to Einstein’s 
Special Theory of relativity, Observers 1 and 2 are moving relative to one 
another through space-time. Events that are simultaneous for Observer 1 
are not simultaneous for Observer 2 and vice versa. 
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these transformations constituting what is called the Lorentz group. 
The discovery of this group was an essential feature in the dis- 
covery of Einstein’s Special Theory of relativity. The Lorentz 
group can be understood as a group of (linear) space-time trans- 
formations, leaving a light-cone invariant. 

W e  can also appreciate the Lorentz group from a slightly dif- 
ferent viewpoint. As I have emphasised, the light-cones are the 
fundamental structures of space-time. Imagine that you are an ob- 
server located somewhere in space, looking out at the Universe. 
What you see are the light rays coming from the stars to your eyes. 
According to the space-time viewpoint, the events you observe are 
the intersections of the world-lines of the stars with your past 
light-cone, as illustrated in figure l0(a). You observe along your 
past light-cone the positions of the stars at particular points. These 
points seem to be situated on the celestial sphere that appears to 
surround you. Now, imagine another observer, moving at some 
great speed relative to you, who passes closely by you at the mo- 
ment you both look out at the sky. This second observer perceives 
the same stars as you do, but finds them to be located in different 
positions on the celestial sphere - this is the effect known as 
aberration. There is a set of transformations that enables us to 
work out the relationship between what each of these observers 
sees on his or her celestial sphere. Each of these transformations 
is one that takes a sphere to a sphere. But it is one of a very special 
kind. It takes exact circles to exact circles and it preserves angles. 
Thus, if a pattern in the sky appears to be circular to you, then it 
must also appear circular to the other observer. 

There is a very beautiful way of describing how this works 
and I illustrate it to show that there is a particular elegance in the 
mathematics that often underlies physics at its most fundamental 
level. Figure 10(c) shows a sphere with a plane drawn through 
its equator. W e  can draw figures on the surface of the sphere and 
then examine how they are projected to the equatorial plane from 
the south pole, as illustrated. This type of projection is known as 
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FIGURE 10. Illustrating how observations are made of the sky by Observers 
1 and 2. (a) Observer 1 observes stars along the past light-cone. The 
points at which stars cross the light-cone are indicated by black dots. Light 
signals propagate from the stars to the observers along the light-cone as 
illustrated. Observer 2 is moving through space-time at a certain speed 
relative to Observer 1 .  (b) Illustrating the location of stars on the sky as 
observed by Observer 1 and Observer 2, when they are coincident at some 
point in space-time, (c) Illustrating the use of the Riemann sphere to 
locate the positions of stars on the celestial sphere for observers moving at 
a constant speed relative to each other. 
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a stereographic projection and it has some rather extraordinary 
properties. Circles on the sphere are projected into exact circles on 
the plane, and the angles between curves on the sphere are pro- 
jected into exactly the same angles on the plane. As I shall discuss 
more fully in the second lecture, this projection allows us to label 
the points of the sphere by complex numbers (numbers involving 
the square root of -1) that can be used to label the points of the 
equatorial plane, together with “infinity,” to give it the structure 
known as the “Riemann sphere.” 

For those who are interested, the transformation is 

It is a fact well known to mathematicians that this transforma- 
tion sends circles into circles and preserves angles. Transforma- 
tions of this kind are known as Möbius transformations. For our 
present purposes, we need merely note the simple elegance of the 
form of the Lorentz (aberration) formula when written in terms 
of such a complex parameter µ

A striking point about this way of looking at these transforma- 
tions is that, according to Special Relativity, the formula is very 
simple, whereas, in expressing the corresponding aberration trans- 
formation according to Newtonian Mechanics, the formula would 
be much more complicated. It often turns out that, when you get 
down to the fundamentals and develop a more exact theory, the 
mathematics turns out to be simpler, even if the formalism appears 
to be more complicated in the first instance. This important point 
is exemplified by the contrast between Galilean and Einstein’s 
relativity. 

Thus, in the Special Theory of relativity, we have a theory that 
is, in many ways, simpler than Newtonian mechanics. From the 
point of view of mathematics, and particularly from the point of 
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view of group theory, it is a much nicer structure. In Special Rela- 
tivity, the space-time is flat and all the light cones are lined up 
regularly, as illustrated in figure 8. If we now go one step further 
to Einstein’s General Relativity, that is, the theory of space-time in 
the presence of gravity, the picture seems at first sight rather mud- 
died up - the light-cones are all over the place (figure 11). Now, 
I have been saying that, as we develop deeper and deeper theories, 
the mathematics becomes simpler, but look what has happened 
here - I had a nice elegant piece of mathematics that has become 
horribly complicated. Well, that sort of thing happens - you will 
have to bear with me for a little while until the simplicity reappears. 

Let me remind you of the fundamental ingredients of Einstein’s 
theory of gravity. One basic ingredient is called Galileo’s Principle 
of Equivalence. In figure 12, I show Galileo leaning over from the 
top of the Tower of Pisa dropping large and small rocks. Whether 
or not he actually performed this experiment, he certainly well 
understood that, if the effects of air resistance are ignored, the two 
rocks would fall to the ground in the same time. If you happened 
to be sitting on one of these rocks looking at the other one as they 
fall together, you would observe the other rock hovering in front 
of you ( I  have shown a camcorder attached to one of the rocks to 
make the observation). Nowadays, with space travel, this is a very 
familiar phenomenon - just recently, we have seen a British-born 
astronaut walking in space, and, just like the big rock and the little 
rock, the spaceship hovers in front of the astronaut - this is ex- 
actly the same phenomenon as Galileo’s Principle of Equivalence. 

Thus, if you look at gravity in the right way, that is, in a fall- 
ing frame of reference, it seems to disappear right in front of your 
eyes. This is indeed correct. But Einstein’s theory does not tell 
you that gravity disappears-it only tells you that the force of 
gravity disappears. There is something left and that is the tidal 
effect of gravity. 

Let me introduce a little bit more mathematics, but not much. 
We need to describe the curvature of space-time and this is de- 
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FIGURE 11. A picture of curved space-time. 

'"O 

FIGURE 12. (a) Galileo dropping two rocks (and a camcorder) from the 
Leaning Tower of Pisa. (b) The astronaut sees the space-vehicle hover 
before him or her, seemingly unaffected by gravity. 
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scribed by an object known as a tensor which I have called Riemann 
in the following equation. It is actually called the Riemann curva- 
ture tensor but I will not tell you what it is except that it is repre- 
sented by a capital R with a number of indices stuck on the bottom, 
which are indicated by the dots. The Riemann curvature tensor is 
made up of two pieces. One of the pieces is called the Weyl curva- 
ture and the other piece is called the Ricci curvature, and we have 
the (schematic) equation 

Riemann = Weyl + Ricci 
R . . . . = C  . . . .  + R . . g . .  

Formally, C. . . . and R. . are the Weyl and Ricci curvature tensors, 
respectively, and g. . is the metric tensor. 

The Weyl curvature measures the tidal effect. What is the 
“tidal” effect? Recall that, from the astronaut’s point of view, it 
seems that gravity has been abolished, but that is not quite true. 
Imagine that the astronaut is surrounded by a sphere of particles, 
which are initially at rest with respect to the astronaut. Now, at 
first they will just hover there but soon they will start to accelerate 
because of the slight differences in the gravitational attraction of 
the Earth at different points in the sphere. (Notice that I am 
describing the effect in Newtonian language, but that is quite ade- 
quate.) These slight differences cause the original sphere of par- 
ticles to become distorted into an elliptical arrangement, as illus- 
trated in figure 13 (a) . 

This distortion occurs partly because of the slightly greater 
attraction of the Earth for those particles closer to the Earth and 
lesser attraction for those further away, and partly because, at the 
sides of the sphere, the Earth’s attraction acts slightly inwards. 
This causes the sphere to be distorted into an ellipsoid. It is called 
the tidal effect for the very good reason that, if you replace the 
Earth by the Moon and the sphere of particles by the Earth with its 
oceans, then the effect of the Moon on the surface of the oceans is 
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FIGURE 13. (a)  The tidal effect. Double arrows show relative acceleration. 
(b) When the sphere surrounds matter (here on Earth), there is a net in- 
ward acceleration. 

exactly the gravitational effect upon the sphere of particles - the 
sea surface closest to the Moon is pulled towards it, whereas the 
ocean surface on the other side of the Earth is, in effect, pushed 
away from it. The effect causes the sea surface to bulge out on 
either side of the Earth and is the cause of the two high tides that 
occur each day. 

The effects of gravity, from Einstein’s point of view, are simply 
this tidal effect. It  is defined precisely by the Weyl curvature, that 
is, the part C. . . . of the Riemann curvature. This part of the 
curvature tensor is volume-preserving - that is, if you work out 
the initial accelerations of the particles of the sphere, the volume 
of the sphere and the volume of the ellipsoid into which it is dis- 
torted are initially the same. 

The remaining part of the curvature is known as the Ricci 
curvature and it has a volume-reducing effect. From figure 13(b) ,  
it can be seen that if, instead of being at the bottom of the dia- 
gram, the Earth were inside the sphere of particles, the volume of 
the sphere of particles would be reduced as the particles accelerate 
inwards. The amount of this reduction in volume is a measure of 
the Ricci curvature. Einstein’s theory tells us that the Ricci curva- 
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ture is determined by the amount of matter present within a small 
sphere about that point in space. In other words, the density of 
matter, appropriately defined, tells us how the particles are accel- 
erated inwards at that point in space. Einstein’s theory is almost 
the same as Newton’s when expressed in this way. 

This is how Einstein formulates his theory of gravity-it is 
expressed in terms of the tidal effects, which are measurements of 
the local space-time curvature. It is crucial that we have to think 
in terms of the curvature of four-dimensional space-time. This 
was shown schematically in figure 11 -we think of the lines that 
represent the world lines of particles and the ways in which these 
paths are distorted as a measurement of the curvature of space- 
time. Thus, Einstein’s theory is essentially a geometric theory of 
four-dimensional space-time - it is an extraordinarily beautiful 
theory mathematically. 

The history of Einstein’s discovery of the theory of General 
Relativity contains an important moral. It was first fully formu- 
lated in 1915. It was not motivated by any observational need but 
by various aesthetic, geometric, and physical desiderata. The key 
ingredients were Galileo’s Principle of Equivalence, exemplified 
by his dropping rocks of different masses (figure 12), and the ideas 
of non-Euclidean geometry, which is the natural language for de- 
scribing the curvature of space-time. There was not a great deal 
on the observational side in 1915. Once General Relativity was 
formulated in its final form, it was realised that there were the 
three key observational tests of the theory. The perihelion of the 
orbit of Mercury is swung around, or precesses, in a way that could 
not be explained by the Newtonian gravitational influence of the 
other planets - General Relativity predicts exactly the observed 
precession. The paths of light rays are bent by the Sun and this 
was the reason for the famous eclipse expedition of 1919, led by 
Arthur Eddington, which found a result consistent with Einstein’s 
prediction (figure 14). The third test was the prediction that clocks 
run slow in a gravitational potential - that is, a clock closer to the 
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ground runs slow with respect to a clock at the top of a tower. 
This effect has also been measured experimentally. These were 
never, however, very impressive tests - the effects were always 
very small and various different theories can give the same results. 

The situation has now changed dramatically - in 1993,   Russell
Hulse and Joseph Taylor were awarded the Nobel prize for a most 

FIGURE 14. (a) A direct observational effect of light-cone tilting. The 
Weyl space-time curvature manifests itself as a distortion of the distant star 
field, here owing to the light-bending effect of the Sun’s gravitational field. 
A circular pattern of stars would get distorted into an elliptical one. 
(b) Einstein’s light-bending effect is now an important tool in observa- 
tional astronomy. The mass of the intervening galaxy may be estimated by 
how much it distorts the image of a distant quasar. 
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extraordinary series of observations. Figure 1 5  shows the binary 
pulsar known as PSR 1913+16 - it consists of a pair of neutron 
stars, each of which is an enormously dense star that has mass 
about that of the Sun but is only a few kilometres in diameter. The 
neutron stars orbit around their common centre of gravity in highly 
elliptical orbits. One of them has a very strong magnetic field and 
particles get swung round and emit intense radiation that travels 
to the Earth, some 30,000 light years away, where it is observed as 
a series of well-defined pulses. All sorts of very precise observa- 
tions have been made of the arrival times of these pulses. In par- 
ticular, all the properties of the orbits of the two neutron stars can 
be worked out as well as all the tiny corrections due to General 
Relativity. 

There is, in addition, a feature that is completely unique to Gen- 
eral relativity, and not present at all in the Newtonian theory of 
gravity. That is that objects in orbit about each other radiate away 
energy in the form of gravitational waves. These are like light 
waves but are ripples in space-time rather than ripples in the elec- 
tromagnetic field. These waves take energy away from the system 
at a rate that can be precisely calculated according to Einstein’s 
theory, and the rate of loss of energy of the binary neutron star 
system agrees very precisely with the observations, as illustrated by 
figure 1 5  (c) , which shows the speed-up of the orbital period of 
the neutron stars, measured over twenty years of observation. 
These signals can be timed so precisely that, over twenty years, the 
accuracy with which the theory is known to be correct amounts to 
about one part in 10 14

  This makes General Relativity the most 
accurately tested theory known to science. 

There is a moral in this story - Einstein’s motivations for de- 
voting eight or more years of his life to deriving the General 
Theory were not observational or experimental. Sometimes people 
argue, “Well, physicists look for patterns in their experimental 
results and then they find some nice theory that agrees with these. 
Maybe this explains why mathematics and physics work so well 



[ P E N R O S E ] Space-time and Cosmology 369

FIGURE 15. (a) A schematic diagram
illustrating the properties of those
neutron stars that are radio pulsars.
Radio emission is emitted along the
poles of the magnetic dipole that is
misaligned with respect to the rota-
tion axis of the neutron star. Sharply
defined pulses are observed when the
narrow beam of radiation is swept
across the line of sight to the observer.
(b) A schematic representation of
the binary pulsar PSR 1913 + 16.
The properties of the two neutron
stars have been derived from very
precise timing of the arrival times of
the pulses using effects that are only
present in Einstein’s General Rela-
tivity. (c) The change of phase of
the arrival times of the pulses from
the binary pulsar PSR 1913 + 16,
compared with the expected change
due to the emission of gravitational
radiation by the binary neutron star
system.
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together.” But, in this case, things were not like that at all. The 
theory was developed originally without any observational motiva- 
tion - the mathematical theory is very elegant and it is physically 
very well motivated. The point is that the mathematical structure 
is just there in nature, the theory really is out there in space— 
it has not been imposed upon nature by anyone. That is one of the 
essential points of this lecture. Einstein revealed something that 
was there. Moreover, it was not just some minor piece of physics 
he discovered - it is the most fundamental thing that we have in 
nature, the nature of space and time. 

Here is a very clear case - it goes back to my original diagram 
concerning the relation between the world of mathematics and the 
physical world (figure 3) .  In General Relativity, we have some 
kind of structure that really does underlie the behaviour of the 
physical world in an extraordinarily precise way. The way in which 
these fundamental features of our world are discovered is often 
not by looking at the way in which nature behaves, although that 
is obviously very important. One has to be prepared to throw out 
theories that might appeal for all sorts of other reasons but that do 
not fit the facts. But here we have a theory that does fit the facts 
with extraordinary accuracy. The accuracy involved is about twice 
as many figures as one has in Newtonian theory; in other words, 
General Relativity is known to be correct to one part in l0l4  whereas 
Newtonian theory was tested only to one part in 107. The im- 
provement is similar to the increase in accuracy with which New- 
ton’s theory was known to be correct between the seventeenth cen- 
tury and now. Newton knew his theory was correct to about one 
part in 1,000, whereas now it is known to be accurate to one part 
in l07. 

Einstein’s General Relativity is just a theory, of course. What 
about the structure of the actual world? I said this lecture would 
not be botanical but, if I talk about the Universe as a whole, that is 
not being botanical, since I will consider only the one Universe as 
a whole that is given to us. There are three types of standard model 
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that come out of Einstein’s theory and these are defined by one 
parameter, which is, in effect, the one denoted by k in figure 16. 
There is another parameter that sometimes appears in cosmologi- 
cal arguments that is known as the cosmological constant. Einstein 
regarded his introduction of the cosmological constant into his 
equations of General Relativity as his greatest mistake and so I 
shall leave it out too. If we are forced to bring it back, well, we 
shall have to live with it. 

Assuming the cosmological constant is zero, the three types of 
Universe, which are described by the constant k ,  are illustrated in 
figure 16. In the diagram, k takes values 1, 0, and -1, because all 
the other properties of the models have been scaled away. A better 
way would have been to talk about the age or scale of the Uni- 
verse, and then one would have a continuous parameter but, quali- 
tatively, the three different models can be thought of as being de- 
fined by the curvature of the space sections of the Universe. If the 
space sections of Universe are flat, they have zero curvature and 
k = O. If the space sections are positively curved, meaning that the 
Universe closes in on itself, then k = +1. In this case the Uni- 
verse has an initial singular state, the Big Bang, which marks the 
beginning of the Universe. It expands to a maximum size and then 
recollapses to a Big Crunch. Alternatively, there is the k = -1 
case, in which the Universe expands forever. The k = O case is the 
limiting boundary between the k = 1 and k = -1 cases. Beside 
the diagrams, I have shown the radius-time relations for these 
three types of Universe in figure 16( d) . The radius can be thought 
of as some typical scale in the Universe and it can be seen that only 
the case k = + l  collapses to a Big Crunch, while the other two 
expand indefinitely. 

I want to consider the k = -1 case in a little more detail - 
it is perhaps the most difficult of the three to come to terms with. 
There are two reasons for being interested in this case particularly. 
One reason is that, if you take the observations as they exist at the 
moment at their face value, it is the preferred model. According 
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FIGURE 16. (a) Space-time picture of an expancaLig universe with Eu- 
clidean spatial sections (two space dimensions depicted), k = 0. (b)  As in 
(a) but for an expanding universe with Lobachevskian spatial sections, 
k =  -1. (c) As in (a) ,  but for an expanding universe with spherical 
spatial sections k = + 1. ( d )  The dynamics of the three different types of 
Friedman model. 
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to General Relativity, the curvature of space is determined by the 
amount of matter present in the Universe and there doesn’t seem 
to be enough to close the geometry of the Universe. Now, it may 
be that there is a lot of dark or hidden matter, which we do not yet 
know about. In this case, the Universe could be one of the other 
models but, if there is not a lot of extra matter, much more than we 
believe must be present within the optical images of galaxies, then 
the Universe would have k= -1. The other reason is that it is 
the one I like the best! The properties of k = —1 geometries are 
particularly elegant. 

What do the k = -1 universes look like? Their spatial sec- 
tions have what is known as hyperbolic or Lobachevski geometry. 
To get a picture of a Lobachevski geometry it is best to look at one 
of Escher’s prints. He made a number of prints that he called 
Circle Limits, and Circle Limit 4 is shown in figure 17. This is 
Escher’s description of the Universe-you see it is full of angels 
and devils! 

A point to note is that it looks as though the picture gets very 
crowded towards the edge of the limit circle. This occurs because 
this representation of hyperbolic space is drawn on an ordinary 
plane sheet of paper, in other words, in Euclidean space. What you 
have to imagine is that all the devils are supposed to be actually 
exactly the same size and shape so that, if you happened to live in 
this Universe towards the edge of the diagram, they would look 
exactly the same to you as the ones in the middle of the diagram. 
This picture gives some impression of what is going on in Loba- 
chevski geometry - as you walk from the centre out to the edge, 
you have to imagine that, because of the way the picture of the 
geometry has had to be distorted, the actual geometry there is ex- 
actly the same as it is in the middle, so that the geometry all about 
you remains the same no matter how you move. 

This is perhaps the most surprising example of a well-defined 
geometry. But Euclidean geometry is, in its way, just as remark- 
able. Euclidean geometry provides a wonderful illustration of the 
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FIGURE 17. Circle Limit 4 by M. C. Escher. 

relation between mathematics and physics. The geometry is a part 
of mathematics, but the Greeks also thought of it as a description 
of the way the world is. Indeed, it turns out to be an extraor- 
dinarily accurate description of the way the world actually is- 
not utterly accurate because Einstein’s theory tells us that space- 
time is slightly curved in various ways, but it is an extraordinarily 
accurate description of the world nevertheless. People used to 
worry about whether or not other geometries were possible. In 
particular, they worried about what is known as Euclid’s fifth pos- 
tulate. This can be reformulated as the statement that, if there is a 
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line in a plane and there is a point outside that line, then there is a 
unique parallel to this line through that point. People used to 
think that maybe this could be proved from the other more ob- 
vious axioms of Euclidean geometry. It turns out that it is not pos- 
sible, and from this the notion of non-Euclidean geometry arose. 

In non-Euclidean geometries, the angles of a triangle do not 
add up to 180º. This is another example where you think that 
things must become more complicated because, in Euclidean geom- 
etry, the angles of a triangle do add up to 180º. But then, in the 
non-Euclidean geometry, if you take the sum of the angles of a tri- 
angle away from 180º you find that this difference is proportional 
to the area of the triangle. In Euclidean geometry, the area of a 
triangle is a complicated thing to write down in terms of angles 
and lengths. In non-Euclidean, Lobachevskian, geometry, there is 
this wonderfully simple formula, due to Johann Heinrich Lambert, 
which enables the area of the triangle to be found. In fact, Lam- 
bert derived his formula before non-Euclidean geometry was dis- 
covered and I have never quite understood that! 

There is another very important point here, which concerns the 
real numbers. These are absolutely fundamental to Euclidean ge- 
ometry. They were essentially introduced by Eudoxus in the fourth 
century B.C. and they are still with us. They are the numbers that 
describe all our physics. As we shall see later, complex numbers 
are needed too, but they are based upon real numbers. 

FIGURE 18. (a) A triangle in Euclidean space. (b)  A triangle in Loba- 
chevskian space. 
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FIGURE 19. Circle Limit 1 by M. C. Escher. 

Let us look at another of the Escher prints to see how the Loba- 
chevski geometry works. Figure 19 is even nicer than figure 18 for 
understanding this geometry because the “straight lines” are more 
obvious. They are represented by arcs of circles that meet the 
boundary at right angles, So, if you were a Lobachevskian person, 
and lived in this geometry, what you would think of as a straight 
line would be one of these arcs. You can see these clearly in 
figure 19 - some of them are straight lines through the centre of 
the diagram, but all the others are curved arcs. Some of these 
“straight lines” are shown in figure 20. In that diagram, I have 
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indicated a point that is not on the straight line crossing the dia- 
gram. Lobachevskian people can draw two (and more) separate 
lines parallel to the diagonal through that point, as I have indi- 
cated. Thus, the parallel postulate is violated in this geometry. 
Furthermore, you can draw triangles and work out the sums of 
angles of the triangles in order to work out their areas. This may 
give you some taste for the nature of hyperbolic geometry. 

Let me give another example. I said that I like hyperbolic, 
Lobachevskian geometry the best. One of the reasons is that its 
group of symmetries is exactly the same as the one that we have 
already encountered, namely, the Lorentz group - the group of 
Special Relativity, or the symmetry group of the light-cones of rela- 
tivity. To see that it is, I have drawn a light-cone in figure 21 but 
with some extra bits drawn on. I have had to suppress one of the 
space dimensions in order to depict it in three-dimensional space. 

FIGURE 20. Illustrating the geometry of Lobachevskian (hyperbolic) space. 
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FIGURE 21. Illustrating Lobachevskian space-time geometry. The circle 
drawn on the plane t = 0 is the Poincaré disc. 

The light-cone is described by the usual equation shown on the 
diagram : 

t2-x2-y2 = 0

The bowl-shaped surfaces shown above and below are located 
at “unit distance” from the origin in this Minkowskian geometry. 
(“Distance” in Minkowskian geometry is actually time - the 
proper time that is physically measured by moving clocks.) Thus, 
these surfaces represent the surface of a “sphere” for the Min- 
kowskian geometry. It turns out that the intrinsic geometry of the 
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“sphere” is actually Lobachevskian (hyperbolic) geometry. If you 
consider an ordinary sphere in Euclidean space, you can rotate it 
around, and the group of symmetries is that of rotating the sphere 
around. In the geometry of figure 21, the group of symmetries is 
the group of symmetries associated with the surface shown in the 
diagram, in other words, with the Lorentz group of rotations. This 
symmetry group describes how space and time transform when a 
particular point in space-time is fixed - rotating the space-time 
about in different ways. W e  now see, with this representation, that 
the group of symmetries of Lobachevskian space is essentially just 
the same as the Lorentz group. 

W e  can carry out a Minkowskian version of the stereographic 
projection, as illustrated in figure l 0 ( b ) ,  The equivalent of the 
south pole is now the point at (-1, O, O)  and we project points 
from the upper bowl-shaped surface to the flat surface at t = O, 
which is the equivalent of the equatorial plane in figure l0 (b ) .  
In this procedure, we project all the points on the upper surface 
to the plane at t = O. The projected points all lie inside a disc in 
the plane at t = O, and this disc is sometimes referred to as the 
Poincaré disc. This is precisely how Escher’s circle limit diagrams 
come about - the entire hyperbolic (Lobachevskian) surface has 
been mapped onto the Poincaré disc. Furthermore, this mapping 
does all the things that the projection of figure 10 (b) does - it 
preserves angles and circles and it all comes out geometrically in a 
very nice way. Well, perhaps I am getting carried away here by 
my enthusiasm — I am afraid that is what mathematicians do
when they get stuck into something. 

The intriguing point is that, when you get carried away by 
something like the geometry of the above problem, the analysis 
and the results have an elegance that sustains them, while analyses 
that do not possess this mathematical elegance peter out. There 
is something particularly elegant about hyperbolic geometry. It 
would be awfully nice, at least to the likes of me, if the Universe 
were built that way too. Let me say that I have various other rea- 
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sons for believing this. Many other people do not like these open, 
hyperbolic universes - they frequently prefer closed universes, 
such as those illustrated in figure 16(c), which are nice and cosy. 
Well, actually, the closed universes are pretty big still. Alterna- 
tively, many people like flat world models as in figure 16(a) be- 
cause there is a certain type of theory of the early Universe, the 
inflationary theory, which suggests that the geometry of the Uni- 
verse should be flat. I should say that I do not really believe these 
theories. 

These three standard types of model of the Universe are what 
are known as the Friedman models and they are characterised by 
the fact that they are very, very symmetrical. They are initially ex- 
panding models but at any moment the Universe is perfectly uni- 
form everywhere. This assumption is built into the structure of the 
Friedman models and it is known as the cosmological principle. 
Wherever you are, the Friedman universe looks the same in all 
directions. It turns out that our actual Universe is like this to a 
remarkable degree. If Einstein’s equations are right, and I have 
shown that the theory agrees with observation to a quite remark- 
able degree, then we are led to take the Friedman models seriously. 
All these models have this awkward feature, known as the Big 
Bang, where everything goes wrong, right at the beginning. The 
Universe is infinitely dense, infinitely hot, and so on - something 
has gone badly wrong with the theory. Nonetheless, if you accept 
that this very hot, dense phase took place, you can make predic- 
tions about what the thermal content of the Universe should be 
today and one of these expectations is that there should be a uni- 
form background of black-body radiation all about us at the pres- 
ent day. Precisely this type of radiation was discovered by Arno 
Penzias and Robert Wilson in 1965. The most recent observations 
of the spectrum of this radiation, which is known as the Cosmic 
Microwave Background Radiation, by the COBE satellite show 
that it has precisely a black body spectrum with quite extraordinary 
precision. 
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FIGURE 22. The precise agreement between the COBE measurements of 
the spectrum of the cosmic microwave background radiation and the 
expected “thermal” nature of the Big Bang’s radiation. 

All cosmologists interpret the existence of this radiation as evi- 
dence that our Universe went through a hot, dense phase. This 
radiation is thus telling us something about the nature of the early 
Universe - it is not telling us everything, but something like the 
Big Bang did take place. In other words, the Universe must have 
been very like the models illustrated in figure 16. 

There is one other very important discovery made by the 
COBE satellite and this is that, although the Cosmic Microwave 
Background Radiation is remarkably uniform and its properties 
can all be accounted for very beautifully mathematically, the Uni- 
verse is not quite perfectly uniform. There are tiny but real irregu- 
larities in the distribution of the radiation over the sky. In fact, we 
expect that these tiny irregularities must be present in the early 
Universe - we are here to observe the Universe and we are cer- 
tainly not just a uniform smudge. The Universe is probably more 
like the pictures illustrated in figure 23. To show how open-minded 
I am, I am using as examples both an open and a closed Universe. 
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FIGURE 23. (a) The evolution of a closed world model with the forma- 
tion of black holes as objects of various types reach the end points of their 
evolution. It can be seen that there is expected to be a horrible mess at 
the Big Crunch. The sequence of events is also shown as a “film-strip.” 
(b) The evolution of the open model with the formation of black holes. 

In the closed Universe, the irregularities will develop to form 
real observable structures - stars, galaxies, and the like - and, 
after a while, black holes will form, through the collapse of stars, 
through the accumulation of mass at the centres of galaxies, and 
so on. These black holes all have singular centres, much like the 
Big Bang in reverse. However, it is not as simple as that. Accord- 
ing to the picture we have developed, the initial Big Bang is a nice, 
symmetrical, uniform state but the end point of the closed model 
is a horrible mess - all the black holes finally coming together 
and producing an incredible jumble at the final Big Crunch, as in 

382
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figure 23 (a ) .  The evolution of this closed model is illustrated 
schematically by the film strip shown in figure 23 (b) . In the case 
of an open universe model, the black holes are still formed as 
well; there is still an initial singularity and singularities formed at 
the centres of the black holes. 

I emphasise these features of the standard Friedman models to 
show that there is a great difference between what we seem to see 
in the initial state and what we expect to find in the remote future. 
This problem is connected with the fundamental law of physics 
known as the Second Law of Thermodynamics. 

W e  can understand this law in simple everyday terms. Imagine 
a glass of wine perched on the edge of the table. It might fall off 
the table, smash to pieces, and the wine spill all over the carpet 
(figure 24). There is nothing in Newtonian physics that tells us 
that the reverse process cannot happen. However, that is never 
observed - you never see wine glasses reassembling themselves 
and the wine being sucked up out of the carpet and into the re- 
assembled glass. So far as the detailed laws of physics are con- 
cerned, the one direction of time is just as good as the other. To  
understand this difference, we need the Second Law of Thermo- 

Or time? 

FIGURE 24. The laws of mechanics are time-reversible; yet the time- 
ordering of such a scene from the right frame to the left is something that 
is never experienced, whereas that from the left frame to the right would 
be commonplace. 
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dynamics, which tells us that the entropy of the system increases 
with time. This quantity called entropy is lower when the glass is 
on the table as compared with when it is shattered on the floor. 
According to the Second Law of Thermodynamics, the entropy of 
the system has increased. Roughly speaking, entropy is a measure 
of the disorder of a system. To  express this concept more precisely, 
we have to introduce the concept of a phase space. 

A phase space is a space of an enormous number of dimensions 
and each point of this multidimensional space describes the posi- 
tions and momenta of all the particles that make up the system 
under consideration. In figure 25, we have selected a particular 
point in this huge phase space that represents where all the par- 
ticles are located and how they are moving. As the system of 
particles evolves, the point moves to somewhere else in the phase 
space and I have shown it wiggling about from one point in phase 
space to another. 

This wiggly line represents the ordinary evolution of the sys- 
tem of particles. There is no entropy there yet. To get entropy, we 

Point starts 

FIGURE 25. The Second Law of Thermodynamics in action: as time evolves, 
the phase-space point enters compartments of larger and larger volumes. 
Consequently, the entropy continually increases. 
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have to draw little bubbles around regions by lumping together 
those different states that you cannot tell apart. That may seem a 
bit obscure - what do you mean by “Cannot tell apart”? Surely 
that depends upon those who are looking and how carefully they 
look? Well, it is one of the slightly tricky questions of theoretical 
physics to say exactly what you mean by entropy. Essentially, what 
is meant is that you have to group states together according to 
what is known as “coarse-graining,” that is, according to those 
things that you cannot tell apart. You take all those that, say, 
lie in this region here and lump them together, you look at the 
volume of that region, take the logarithm of the volume, and 
multiply it by the constant known as Boltzmann’s constant, and 
that is the entropy. What the Second Law of Thermodynamics 
tells us is that the entropy increases. What it is telling you is 
actually something rather silly - all it is saying is that, if the sys- 
tem starts off in a little tiny box and it is allowed to evolve, it 
moves into bigger and bigger boxes. It is very likely that this 
happens because, if you look at the problem carefully, the bigger 
boxes are absolutely stupendously huger than the neighbouring 
little boxes. So, if you find yourself in one of the big boxes, there 
is absolutely no chance of getting back into a smaller box. That is 
all there is to it. The system just wanders about in phase space 
getting into bigger and bigger boxes. That is what the Second Law 
is telling us. Or is it ? 

Actually, that is only half the explanation. It tells us that, if 
we know the state of the system now, we can tell the most likely 
state in the future. But it tells us the completely wrong answer if 
we try to use the same argument backwards. Suppose the glass is 
sitting on the edge of the table. W e  can ask, “What is the most 
likely way by which it could have got there?” If you use the argu- 
ment we have just given backwards, you would conclude that the 
most likely thing is that it started as a great mess on the carpet and 
then picked itself up off the carpet and reassembled itself on the 
table. This is clearly not the correct explanation - the correct ex- 
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planation is that someone put it there. And that person put it 
there for some reason, which was in turn due to some other reason, 
and so on. The chain of reasoning goes back and back to lower 
and lower entropy states in the past. The correct physical curve 
is illustrated in figure 26 - the entropy goes down and down and 
down in the past. 

The reason why the entropy increases in the future is explained 
by moving into larger and larger boxes -why   it goes down in the
past is something completely different. There must have been 
something that pulled it down in the past. What pulled it down in 
the past? As we go into the past, the entropy gets smaller and 
smaller until eventually we end up at the Big Bang. 

There must have been something very, very special about the 
Big Bang, but exactly what that was is a controversial issue. One 
popular theory, which I said I did not believe but which a lot of 
people are very keen on, is the idea of the inflationary universe. 
The idea is that the Universe is so uniform on the large scale be- 
cause of something that was supposed to have taken place in the 

FIGURE 26. If we use the argument depicted in figure 25 in the reverse 
direction in time, we “retrodict” that the entropy should also increase in 
the past, from its value now. This is in gross contradiction with observation. 
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very earliest phases of the expansion of the Universe. It is sup- 
posed that an absolutely enormous expansion took place when the 
Universe was only about 10-36  seconds old and the idea is that, no 
matter what the Universe looked like in these very early stages, if 
you expand it by a huge factor of about 1060, then it will look flat. 
In fact, this is one reason why these people like the flat Universe. 

But, as it stands, the argument does not do what it is supposed 
to do - what you would expect in this initial state, if it were ran- 
domly chosen, would be a horrendous mess and, if you expand 
that mess by this huge factor, it still remains a complete mess. In 
fact, it looks worse and worse the more it expands (figure 27) .  

So the argument by itself does not explain why the Universe is 
so uniform. W e  need a theory that tells you what the Big Bang 
was really like. W e  do not know what that theory is, but we know 
that it has to involve a combination of large-scale and small-scale 
physics. It has to involve quantum physics as well as classical 
physics. Furthermore, I would claim that the theory must also 
have as one of its implications that the Big Bang was as uniform 
as we observe it to be. Maybe such a theory will end up producing 
a hyperbolic, Lobachevskian universe, like the picture I prefer, but 
I shall not insist upon that. 

Let us return to the pictures of the closed and open Universes 
again (figure 28) .  In addition, I have included a picture of the 
formation of a black hole, which will be well known to the ex- 

Roughly the 
scale of the 
Universe 

FIGURE 27.  Illustrating the problem of the inflation of irregularities in the 
early Universe. 
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FIGURE 28. (a) The entire history of a closed universe that starts from 
a uniform low-entropy Big Bang with Weyl=0 and ends with a high- 
entropy Big Crunch - representing the congealing of many black holes - 
with Weyl + C O .  (b) A space-time diagram depicting collapse to a black 
hole. (c) The history of an open universe, again starting from a uniform 
low-entropy Big Bang with Weyl = O. 



[PENROSE] Space-time and Cosmology 389 

perts. Matter collapsing into a black hole produces a singularity 
and that is what the dark lines on the space-time diagrams of the 
Universe represent. I want to introduce a hypothesis that I call the 
Weyl curvature hypothesis. This is not an implication of any 
known theory. As I have said, we do not know what the theory is, 
because we do not know how to combine the physics of the very 
large and the very small. When we do discover that theory, it 
should have as one of its consequences this feature that I have 
called the Weyl curvature hypothesis. Remember that the Weyl 
curvature is that bit of the Riemann tensor that causes distortions 
and tidal effects. For some reason we do not yet understand, in the 
neighbourhood of the Big Bang, the appropriate combination of 
theories must result in the Weyl tensor being essentially zero, or 
rather be constrained to be very small indeed. 

That would give us a Universe like that shown in figure 28 (c) 
and not like that in figure 28 (a) .  The Weyl curvature hypothesis 
is time-asymmetrical and it applies only to the past type singulari- 
ties and not to the future singularities. If the same rule of vanish- 
ing Weyl tensor that I have applied in the past also applied to the 
future of the Universe, in the closed model, you would end up 
with a dreadful looking Universe with as much mess in the past as 
in the future (figure 29). This looks nothing like the Universe 
we live in. 

What is the probability that, purely by chance, the Universe 
had an initial singularity looking even remotely as it does? The 
probability is less than one part in 1010123 Where does this estimate 
come from? It is derived from a formula by Jacob Beckenstein 
and Stephen Hawking concerning black hole entropy and, if you 
apply it in this particular context, you obtain this enormous an- 
swer. It depends how big the Universe is and, if you adopt my 
own favorite Universe, the number is, in fact, infinite. 

What does this say about the precision that must be involved 
in setting up the Big Bang? It is really very, very extraordinary. 
I have illustrated the probability in this cartoon of the Creator, 
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FIGURE 29. If the constraint Weyl = O is removed, then we have a high- 
entropy Big Bang also, with Weyl+m there. Such a universe would be 
riddled with white holes, and there would be no Second Law of Thermo- 
dynamics, in gross contradiction with experience. 

finding a very tiny point in that phase space that represents the 
initial conditions from which our Universe must have evolved if it 
is to resemble remotely the one we live in (figure 30). To find it, 
the Creator has to locate that point in phase space to an accuracy 
of one part in 1010123

. If I were to put one zero on each elementary 
particle in the Universe, I still could not write the number down 
in full. It is a stupendous number. 

I have been talking about precision - how mathematics and 
physics fit together with extraordinary accuracy. I have also talked 
about the Second Law of Thermodynamics, which is often thought 
of as a rather floppy law - it concerns randomness and chance, 
and yet there is something very precise hiding underneath this law. 
As applied to the Universe, it has to do with the precision with 
which the initial state was set up. This precision must be some- 
thing to do with the union of quantum theory and general rela- 
tivity, a theory we do not have. 
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FIGURE 30. In order to produce a universe resembling the one in which 
we live, the Creator would have to aim for an absurdly tiny volume of the 
phase space of possible universes - about 1/1010123

 of the entire volume, 
for the situation under consideration. (The pin and the spot aimed for are 
not drawn to scale!) 


